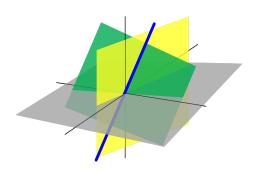
ALGÈBRE LINÉAIRE

Cours du 12 décembre

Jérôme Scherer

tt poll.eu 041603



7.1.3 Théorème spectral

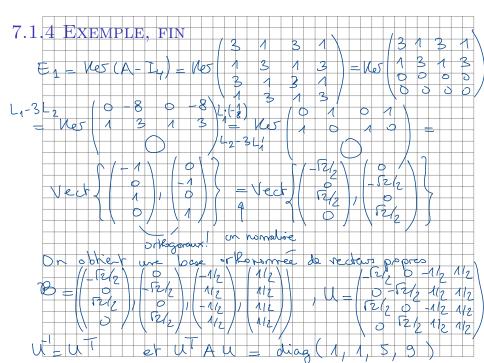
Théorème spectral

Soit A une matrice symétrique. Alors

- A admet *n* valeurs propres réelles (avec multiplicité).
- ② Pour toute valeur propre λ on a $\operatorname{mult}(\lambda) = \dim E_{\lambda}$.
- **3** Si $\lambda \neq \mu$, alors $E_{\lambda} \perp E_{\mu}$.
- A est orthodiagonalisable.

ATTENTION!

Si λ est une valeur propre de multiplicité ≥ 2 , alors la base de vecteurs propres de E_{λ} fournie par la méthode de Gauss n'est pas orthogonale en général, il faut Gram-Schmidter pour obtenir une base orthonormée de vecteurs propres.



7.1.5 MÉTHODE.

- Vérifier que *A* est symétrique.
- ② Calculer $c_A(t)$ et en extraire les racines (valeurs propres).
- Calculer les espaces propres. Pour chacun, le procédé de Gram-Schmidt donne une base orthonormée.
- En assemblant les bases des espaces propres on obtient une base orthonormée \mathcal{U} de \mathbb{R}^n .
- La matrice P dont les colonnes sont les vecteurs \overrightarrow{u}_i de \mathcal{U} est orthogonale et P^TAP est diagonale.

AVANTAGE

La matrice de changement de base inverse est P^{T} .

7.1.6 Matrice de projection

Soit \overrightarrow{u} un vecteur unitaire et $\overrightarrow{A} = \overrightarrow{u} \overrightarrow{u}^T$. Alors

$$\overrightarrow{AX} = \overrightarrow{u}(\overrightarrow{u}^T\overrightarrow{X}) = (\overrightarrow{u} \cdot \overrightarrow{X})\overrightarrow{u}$$

- \overrightarrow{u} est un vecteur propre de A pour la valeur propre 1 car $(\overrightarrow{u} \cdot \overrightarrow{u}) \overrightarrow{u} = \overrightarrow{u}$.
- 2 Posons $W = \text{Vect}(\overrightarrow{u})$. Alors W^{\perp} est le noyau de A.
- 3 Ainsi $E_1 = W$ et $E_0 = W^{\perp}$.

PROPOSITION

La matrice $A = \overrightarrow{u} \overrightarrow{u}^T$ est la matrice de la projection orthogonale sur $W = \text{Vect}(\overrightarrow{u})$. On a $A\overrightarrow{x} = \text{proj}_{\overrightarrow{u}}\overrightarrow{x}$.

C'est un cas particulier que nous avons vu pour UU^T , matrice de projection orthogonale quand les colonnes de U sont orthonormées.

Suivie d'une Romottetie est en fait la préceir de

7.1.7 DÉCOMPOSITION SPECTRALE

DÉFINITION

Soit A symétrique, U orthogonale et $U^TAU = D$ diagonale.

L'ensemble des valeurs propres de A est appelé spectre de A.

$$A = UDU^{T} = (\overrightarrow{u}_{1} \overrightarrow{u}_{2} \dots \overrightarrow{u}_{n}) \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix} \begin{pmatrix} \overrightarrow{u}_{1}^{T} \\ \overrightarrow{u}_{2}^{T} \\ \vdots \\ \overrightarrow{u}_{n}^{T} \end{pmatrix}$$

$$= (\lambda_{1} \overrightarrow{u}_{1} \dots \lambda_{n} \overrightarrow{u}_{n}) \begin{pmatrix} \overrightarrow{u}_{1}^{T} \\ \vdots \\ \overrightarrow{u}_{n}^{T} \end{pmatrix} = \lambda_{1} \overrightarrow{u}_{1} \overrightarrow{u}_{1}^{T} + \dots + \lambda_{n} \overrightarrow{u}_{n} \overrightarrow{u}_{n}^{T}$$

$$A = \lambda_1 \overrightarrow{u}_1 \overrightarrow{u}_1^T + \dots + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T$$
 est la décomposition spectrale.

7.1.7 Interprétation de la déc. spectrale

Si A est une matrice symétrique, alors

$$A = \lambda_1 \overrightarrow{u}_1 \overrightarrow{u}_1^T + \dots + \lambda_n \overrightarrow{u}_n \overrightarrow{u}_n^T$$

est sa décomposition spectrale.

Ainsi A se décompose en une combinaison linéaire de projections orthogonales!

7.1.7 Exemple de déc. spectrale

Soit $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ la matrice symétrique que nous avons orthodiagonalisée mardi. Nous avons trouvé une base orthonormée de vecteurs propres (pour les valeurs propres -1 et 3):

$$\mathcal{U} = (\overrightarrow{u}_1, \overrightarrow{u}_2) = \left(\begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \right)$$

La décomposition spectrale de A est donc

$$A = -1 \cdot \overrightarrow{u}_1 \overrightarrow{u}_1^T + 3 \cdot \overrightarrow{u}_2 \overrightarrow{u}_2^T$$

7.1.7 EXEMPLE, SUITE

The surface of the scale
$$x = -y$$
 and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$. The surface $y = -1$ and $y = -1$

A.12 Exemples et preuvi

premier Cas 45 er COS Cons \mathcal{N} #0 emme 80 文.ト # que munha 81 > 64 4 m pposons disons ast pouver Hon enne x #0 O absorbant ass. (2 O

A.12 PREUVE, SUITE ET COT (K ups |n| =h = monhe 81 emme Car premies. n. a. distr. lemme Soil a.1/K + 0 Coil 9 pent enter hon hu est le Soit b = a b=nera=

A.13 La cardinalité d'un corps fini

Soit $p = \operatorname{car} K$. Alors le corps \mathbb{F}_p agit sur K par multiplication.

DÉFINITION

Soit $k \in \mathbb{F}_p$ et $x \in K$. On pose $k \cdot x = (k \cdot 1_K) \cdot x$.

Cette action est bien définie puisque $p \cdot 1_K = 0$. Les propriétés de l'action sont toutes conséquence du fait que K est un corps.

PROPOSITION

Soit K un corps fini et $p = \operatorname{car} K$. Alors K est un \mathbb{F}_p -espace vectoriel.

THÉORÈME.

Soit K un corps fini et $p = \operatorname{car} K$. Alors il existe n tel que K a p^n éléments. On appelle ce nombre la cardinalité de K.

A.13 PREUVE dim an TP é le mento 6 ase a Coordonnées passage \propto buen bijection eor alle alve de Colle -V aut Xem impossible 6

A.14 Construction de corps finis

La construction de \mathbb{F}_4 n'est pas un cas isolé, la méthode générale fonctionne de la même manière. Soit p un nombre premier.

- Trouver un polynôme p(t) unitaire irréductible de degré n dans F_p[t].
- Considérer l'ensemble K de tous les restes de division par p(t). Il y en a p^n .
- **1** Définir la somme dans K comme dans $\mathbb{F}_p[t]$.
- **1** Définir le produit dans K par celui de $\mathbb{F}_p[t]$, modulo p(t).
- **6** Alors K est un corps de cardinalité p^n .

A.15 Exemple : Le corps \mathbb{F}_{49}

Nous cherchons un polynôme irréductible de degré 2.

PROPOSITION

Jans X

Soit K un corps et $p(t) = t^2 - a$. Si a n'est pas un carré, alors p(t) est irréductible.

Preuve. En effet p(t) est irréductible si et seulement si il n'a pas de racine (car il est de degré 2), si et seulement si $p(x) \neq 0$ pour tout $x \in K$.

Or,
$$p(x) = x^2 - a = 0$$
 si et seulement si $a = x^2$ est un carré.

REMARQUE

Pour trouver un polynôme irréductible de degré 2 à coefficients dans \mathbb{F}_7 , nous cherchons à comprendre quels éléments sont des carrés.

A.15 LES CARRÉS DE F7 exemple des restes de la división par A.15 CALCULS DANS F49 On pose (Dmne a. x + podit est désermine

A.15 LA NOTION DE CLASSE

Nous avons construits \mathbb{F}_p comme le corps des restes de la division euclidienne des entiers \mathbb{Z} par p, un nombre premier. Chaque entier dont le reste de la division vaut 2 représente alors dans \mathbb{Z} le même élément dans \mathbb{F}_p :

$$\dots$$
, 2 – 2 p , 2 – p , 2, 2 + p , 2 + 2 p , \dots

On dit que le reste 2 est la classe de tous ces nombres, on écrit souvent $[2] \in \mathbb{F}_p$ pour distinguer cet élément du nombre entier 2.

Dans \mathbb{F}_{49} , l'élément α est la classe [t]. C'est un élément qui est représenté dans $\mathbb{F}_7[t]$ par tous les polynômes dont le reste de la division par t^2-3 vaut t, par exemple

$$t^2 + t + 3, t^3 + 5t, \dots$$

A.16 Quelques faits sans preuve

PROPOSITION

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un polynôme irréductible de degré n dans $\mathbb{F}_p[t]$.

THÉORÈME

Soit p un nombre premier et $n \ge 1$ un entier. Il existe toujours un corps fini de cardinalité p^n .

REMARQUE

En fait un tel corps est unique à isomorphisme près, ce qui signifie que deux choix différents de polynômes p(t) et q(t) donnent des corps $\mathbb{F}_p[t]/(p(t))$ et $\mathbb{F}_p[t]/(q(t))$ qui sont isomorphes.

Il existe donc un isomorphisme $f: \mathbb{F}_p[t]/(p(t)) \to \mathbb{F}_p[t]/(q(t))$.